Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
- Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
- The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4},
A solution set is:
(-1, 0, 1)
(-1, -1, 2)
class Solution {
public:
vector<vector<int> > threeSum(vector<int> &num) {
vector<vector<int> > res;
int size = num.size();
if(size < 3) return res;
sort(num.begin(), num.end());
for(int i=0;i<size-2;i++)
{
//thats key to avoid duplication!
if(i && num[i] == num[i-1])continue;
int start = i + 1;
int end = size - 1;
while(start < end)
{
int v = num[i]+num[start]+num[end];
if(v < 0)
{
start ++;
}
else if(v > 0)
{
end --;
}
else
{
vector<int> rec({num[i],num[start],num[end]});
res.push_back(rec);
start ++; end--;
while (start<end&&num[start]==num[start - 1])
start++;
}
}
}
return res;
}
};