Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
- Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
- The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4}, A solution set is: (-1, 0, 1) (-1, -1, 2)
class Solution { public: vector<vector<int> > threeSum(vector<int> &num) { vector<vector<int> > res; int size = num.size(); if(size < 3) return res; sort(num.begin(), num.end()); for(int i=0;i<size-2;i++) { //thats key to avoid duplication! if(i && num[i] == num[i-1])continue; int start = i + 1; int end = size - 1; while(start < end) { int v = num[i]+num[start]+num[end]; if(v < 0) { start ++; } else if(v > 0) { end --; } else { vector<int> rec({num[i],num[start],num[end]}); res.push_back(rec); start ++; end--; while (start<end&&num[start]==num[start - 1]) start++; } } } return res; } };