Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
class Solution {
public:
int numTrees(int n)
{
vector<int> num(n+1,0);
num[0] = 1;
num[1] = 1;
for(int j=2;j<=n;j++)
{
int res = 0;
for(int i=1;i<=j;i++)
{
res += num[j-i]*num[i-1];
}
num[j] = res;
}
return num[n];
}
};