Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
class Solution { public: int numTrees(int n) { vector<int> num(n+1,0); num[0] = 1; num[1] = 1; for(int j=2;j<=n;j++) { int res = 0; for(int i=1;i<=j;i++) { res += num[j-i]*num[i-1]; } num[j] = res; } return num[n]; } };